Las diferencias de Newton se subdividen en: Diferencias Finitas Divididas Al asumir que los valores de una función f(x) son aproximadamente lineales, dentro de un rango de valores, es equivalente a decir que la razón
es aproximadamente independiente de x0 y x1 en el rango. Esta razón se conoce con el nombre de primera diferencia dividida de f(x), relativa a x1 y x0, y se designa por medio de f[x1 ,x0]. Se puede inferir de la ecuación que f[x1 ,x0] = f[x0 ,x1]. Por tanto, la linearidad aproximada se puede expresar en la forma f[x0 ,x] f[x1 ,x0] lo que nos lleva a la ecuación de interpolación f(x) f(x0)+ (x -x0).f[x0 ,x1] o la fórmula equilalente
Ejemplo
0 comentarios:
Publicar un comentario